Биохимический состав крови


Биохимический состав биологических жидкостей: крови, мочи,

План.

1. Биохимический состав крови.

2. Биохимический состав мочи.

Биохимический состав крови.

Функции крови: 1) доставка к клеткам кислорода, питательных веществ и удаление из них углекислоты, продуктов метаболизма; 2) поддержание постоянства водно-солевого состава, коллоидно-осмотического давления, рН, температуры тела, содержания глюкозы и других метаболитов в клетках; 3) поддержание функции иммунной системы; 4) свертываемость при повреждении тканей; 5) перенос гормонов, других регуляторов метаболизма и др.

Физико-химические свойств крови.

  1. Плотность колеблется в пределах 1040-1060.

  2. Вязкость в 5-6 раз выше, чем у вод.

  3. Осмотическое давление равно 7-8 атмосфер. Постоянство его поддерживается легкими, почками, кожей и др.

  4. рН крови колеблется в пределах 7,36-7,44. Постоянство его поддерживается карбонатной, фосфатной, белковой и гемоглобиновой буфурными системами, легкими, выводящими избыток угольной кислоты, и почками, удаляющими избыток кислых или щелочных солей.

  5. Химический состав крови.

Эритроциты – безъядерные клетки, генерирующие АТФ в реакциях анаэробного гликолиза. Калия в них 470 мг%, натрия – 80 мг%. Основной белок – гемоглобин. Содержание его в крови колеблется в пределах 80-130 г/л. Гипогемоглобинемия наблюдается при острой или хронической кровопотери, усиленном гемолизе, замедленном биосинтезе, вызванном дефицитом железа, витамина В12, фоливой кислоты, аминокислот, нарушением генетического кода и др.

Плазма крови.

Показатели белкового обмена.

Общее количество белка в плазме крови у млекопитающих составляет 65-85 г/л. Синтезируются они, за исключением γ-глобулинов (синтезируются В-лимфоцитами), в печени. Гипопротеинемия наблюдается при патологии этого органа, дефиците аминокислот и других питательных веществ, потери белков почками или выход их в полости в виде транссудатов и др.Альбуминов в плазме крови 35-50 г/л. Они являются переносчиками жирных кислот, стероидных гормонов, билирубина, лекарственных средств и др.

Глобулинов в плазме крови млекопитающих – 120-200 г/л. Различают их фракции: α1 -, α2 -, β - и γ-глобулины. В состав каждой фракции входят подфракции. В составе α1 – глобулина имеются α1 –гликопротеин, ретинолсвязывающий белок, α1-антитрипсин, тироксинсвязывающий белок и транскортин. α2 –глобулины делятся на подфракции церуллоплазмин (поддерживает уровень меди в крови), гаптоглобины (предовращают потерю железа кровью), α2 –макроглобулин (один из белков острой фазы воспаления). В состав β – глобулинов входя трансферрин (переносчик железа), гемопексин (связывет гемм и доставляет его в печень), β-липопротеины, β2- микроглобулин и С-реактивный белок (белок острой фазы воспаления). Различают 5 подфракций γ-глобулинов – иммуноглобулины G, A, M, E и D, принимающие участие в формировании иммунитета. В плазме крови содержатся фибриноген (2-4 г/л) и другие белки свертывания крови, системы комплемента и др.

Остаточный азот – сумма азотосодержащих веществ, остающихся после осаждения белков плазмы крови. Его содержание колеблется в пределах 14-28 ммоль/л. 50 % его приходится на мочевину, 25 % - на аминокислоты, 4 –5 % - на мочевую кислоту и креатин, 0,5 % - креатинин, аммиак, индикан. Гиперазотемия бывает продукционной, вызванной усиленным распадом белков, и ретенционная, вызванная недостаточно эффективным выведением азотосодержащих веществ почками.

Билирубин – продукт распада билирубина в организме. Концентрация его в крови составляет 0,1-0,3 мг/л. Увеличивается она при желтухах различного происхождения: механической, парехиматозной и гемолитической.

Показатели углеводного обмена.

Глюкоза – основной энергетический источник в организме. В крови содержание ее колеблется в пределах 3,8-5,2 ммоль/л. Поддерживается оно за счет депонирования глюкозы в печени в виде гликогена после приема пищи и расщепления гликогена в промежутках между едой. Увеличивается концентрация глюкозы в крови после приема углеводов, при стрессовых ситуациях, сахарном диабете и др., снижается – при истощении организма, отравлении, опухолях и др.

Молочная кислота – продукт расщепления глюкозы в анаэробных условиях. Концентрация ее в крови составляет 0,6 -1,3 ммоль/л. Увеличивается она при недостатке в организме кислорода, вызванном различными факторами.

Показатели липидного обмена.

Общее количество липидов в крови составляет 5-9 г/л. Увеличивается после приема жирной пищи, усиленном разрушении тканей, при атеросклерозе. Одним из компонентов их является холестерин. Содержание его в крови – 3-6 ммоль/л. Снижается оно при патологии печени, в которой синтезируется холестерин плазмы крови. Повышается концентрация холестерина в крови у старых животных, при атеросклерозе. Липопротеины плазмы крови можно разделить на фракции : хиломикроны, пре-β-, β- и α-липопротеины. Содержание пре-β-, β-липопротеинов увеличивается, а концентрация α-липопротеинов в крови снижается при атеросклерозе.

Показателями липидного обмена являются также кетоновые тела – суммарное содержание в крови ацетоуксусной, β-оксимасляной кислот и ацетона. У здоровых животных их концентрация в крови не превышает 0,1 г/л. Увеличивается она при кормлении высокопродуктивных жвачных животных концентратными кормами, сахарном диабете, углеводном голодании. Накопление кетоновых тел в тканях может привести к истощению буферных систем крови с последующим развитием ацидоза.

Показателями минерального обмена.

Концентрация ионов кальция в крови составляет 2,2-2,6 ммоль/л. Увеличивается при усиленном распаде костной ткани, переломах, повышенной инкреции паратгормона, снижается – при рахите, остеодистрофии различного происхождения.

Содержание фосфата в плазме крови млекопитающих колеблется от 1,20 до 1,84 ммоль/л. Снижается оно при уменьшенном поступлении фосфата с кормами, недостаточно эффективном усвоении, связанным с патологией пищеварительной системы, рахитом, увеличивается – при передозировке витамина Д, патологии почек, острой желтой атрофии печени, токсикозах беременности и др.

Концентрация ионов калия в плазме крови составляет 3,5-5 ммоль/л, меньше, чем в клетках. Увеличивается она при усиленном распаде клеток крови, печени, почек и других органов.

Содержание ионов натрия в плазме крови домашних животных колеблется в пределах 130-150 ммоль/л. Снижается оно при недостатке хлорида натрия в кормах, поносе, рвоте, сниженной инкреции альдостерона, повышается - при отравлении поваренной солью,ассасывании отеков, обезвоживании организма.

Концентрация хлоридов в плазме крови составляет 95-150 ммоль/л. Увеличивается она при задержке воды в организме, сниженной секреции соляной кислоты в желудке, снижается – при обезвоживании организма, при повышенной сниженной секреции соляной кислоты.

Биохимический состав мочи.

Почки – важнейший орган организма, основной задачей которого является поддержание постоянства внутренней среды организма. Они участвуют в выделении из организма продуктов обмена веществ, регуляции водно-электролитного баланса, поддержании кислотно-щелочного состояния, регуляции кровяного давления, стимуляции эритропоэза и т.д.

Физико-химические свойства мочи

Моча большинства животных – прозрачная (у лошадей и ослов мутная) жидкость, окрашенная в желтый цвет разных оттенков. Так, у свиней, собак и коз она светло-желтая, у лошадей и крупного рогатого скота – от светло-желтой до темно-коричневой. Запах мочи специфический для каждого вида животных. При стоянии моча мутнеет, постепенно на дне образуется осадок, что связано с попаданием в мочу муцина и клеток эпителия. В патологических случаях моча бывает мутной от наличия в ней белков, большого количества эпителиальных клеток и лейкоцитов.

Суточное количество мочи у сельскохозяйственных животных сильно колеблется и зависит от возраста, количества выпитой воды, физической нагрузки, породы, состава корма и ряда других факторов. Количество мочи уменьшается при обильном потоотделении, рвотах, поносах..

При стоянии моча в результате окисления входящих в ее состав органических веществ постепенно темнеет, приобретает запах аммиака (разложение мочевины). Моча животного от лекарственных веществ приобретает их запах (ментол, скипидар, валериана и др.), а в некоторых случаях и окраску (метиленовый синий, акрихин, сантонин и др.). Окраска изменяется также при попадании в мочу патологических составных частей: метгемоглобина (коричневая), желчных пигментов (зеленоватая). При лихорадке она будет интенсивно-желтой.

Плотность мочи зависит от ее количества и прямо пропорциональна интенсивности ее окраски. Колебания плотности для мочи разных животных находятся в пределах 1,010–1,070.

Осмотическое давление мочи колеблется в широких пределах. Так, при обильном поении оно падает, а при ограниченном приеме воды повышается. Увеличивается осмотическое давление и при тяжелой работе, когда из организма выделяется много жидкости с потом.

Реакция мочи (рН) у травоядных щелочная, у плотоядных – кислая, у всеядных при преобладании в рационе растительных кормов она щелочная, кормов животного происхождения – кислая.

Химический состав мочи. Азотсодержащие органические вещества. Среди этих веществ основную массу составляет мочевина. Кроме мочевины, в моче всегда имеются мочевая кислота, пуриновые и пиримидиновые основания, аллантоин, креатинин, гиппуровая кислота, аминокислоты, индикан и некоторые другие. Содержание перечисленных веществ в моче определяется как по абсолютному количеству, выделенному за сутки, так и в процентах к общему азоту мочи.

Мочевина – один из важнейших конечных продуктов белкового обмена, и ее содержание в моче изменяется в зависимости от количества принятых с кормом белков. При сбалансированном белковом питании абсолютное количество мочевины, выделяемое за сутки с мочой, составляет у коров 60–100 г, у лошадей – 75–150, у собак – 3–10 г. На мочевину приходится 82–84,5% общего азота мочи, а относительное содержание мочевины к общему количеству мочи у коров колеблется от 1,5 до 3,5%, у овец – от 0,3 до 5,5%.

Содержание мочевины в моче повышается при усилении функции щитовидной железы, надпочечников, гипофиза, обильном потреблении воды, лихорадочных состояниях. Выделение мочевины уменьшается у животных в состоянии покоя; после приема богатого углеводами корма; при отравлении фосфором, мышьяком и некоторыми другими ядами, действующими на печень; при циррозе и жировом перерождении печени.

Мочевая кислота содержится в моче как в свободном состоянии, так и в виде калиевых и натриевых солей (уратов) в среднем от 0,05 до 0,2 мг%. В моче растворимость мочевой кислоты выше, чем в воде.

Креатин является составной частью мышечной ткани и частично может выделяться с мочой. Большая его часть в тканях превращается в креатинин. Оба эти вещества всегда обнаруживаются в моче сельскохозяйственных животных, Так, в моче лошадей содержится креатинина 0,0035%, коров – 0,0090, свиней – 0,0100, собак – 0,0087%.. Образование креатина и выделение с мочой креатинина возрастает при напряженной работе, тренинге, состязаниях.. Этот коэффициент для лошадей равен 6,8–7,5, собак – 8,4, птиц – 3,4. Количество креатина в моче невелико, но может увеличиваться у беременных и растущих животных, при пониженной температуре тела. Появление креатина в моче называется креатинурией. К креатинурии приводят многие болезни мышц (миопатия, миозит, астения, флегмона).

Гиппуровая кислота – продукт обезвреживания бензойной кислоты глицином. Лошади за сутки выделяют с мочой около 160 г гиппуровой кислоты, коровы – около 150, овцы – 30, собаки – 0,05–0,2 г. Пигменты мочи представлены урохромом, урохромогеном, уроэритрином, уробилиногеном и уробилином. Повышение количества уробилина в моче наблюдается при интенсивном распаде гемоглобина и служит показателем нарушения обмена веществ.

Минеральные вещества.Больше всего в моче хлористого натрия, причем концентрация его в суточном объеме мочи может сильно колебаться. Кроме хлоридов, в моче содержится одно- и двузамещенный фосфорно-кислый натрий, гидрокарбонат натрия и аналогичные соли калия, кальция, магния. В щелочной моче травоядных обычно присутствуют также гидрокарбонаты. При подкислении такой мочи она вспенивается благодаря выделению СО2 из углекислых солей.

Патологические составные части мочи- продукты, которые в нормальной моче не содержатся (белки, сахар, ацетоновые тела, желчные и кровяные пигменты).Моча здорового животного содержит лишь следы белка, При нефритах, расстройствах сердечной деятельности, беременности и в некоторых других случаях в крови могут появиться сывороточные белки, главным образом альбумины.

Наличие ее в моче крови называется гематурией. Оксигемоглобин и форменные элементы появляются в моче при повреждении мочеполовых путей (ранение слизистой острыми краями мочевых камней), а также при нефритах. Такое явление называют гематурией. Моча при гематурии непрозрачна и окрашена в темно-красный цвет. Если в моче есть гемоглобин, но отсутствуют форменные элементы, то такое явление называют гемоглобинурия. Моча при этом окрашена в красный или в кофейно-бурый цвет. Кровяные пигменты появляются в моче при усиленном разрушении эритроцитов в результате тяжелых отравлений, при ожогах, тяжелых инфекциях и в некоторых других случаях.

Глюкоза в моче здоровых животных не определяется, но может появляться в ней на непродолжительное время в небольших количествах (до 10–30 г на литр) после приема больших количеств легко перевариваемых углеводов, при стрессовых ситуациях. Стойкая глюкозурия свидетельствует о заболевании организма сахарным диабетом. При обильном кормлении животных углеводами в моче может появиться фруктоза, галактоза, пептозы, лактоза.

Кетоновые тела (ацетон, ацетоуксусная и β-оксимасляная кислоты). Повышение их концентрации в крови называется гиперкетонемией, а появление в моче – кетонурией. Кетоновые тела выделяются с мочой в больших количествах при нарушении обмена веществ (недостаток углеводов, избыток белков в кормах, авитаминоз В3, диабет и др.). Так, количество ацетона в суточной моче может доходить до 50 г и больше, а β-оксимасляной кислоты – до 50–100 г. Ацетон в этом случае выводится из организма не только с мочой, но и с молоком, и выдыхаемым воздухом.

Лекция №17

studfiles.net

Кафедра биохимии

ГОУВПО УГМА Федерального агентства по здравоохранению и социальному развитию

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

ЛЕКЦИЯ № 22

Тема: Биохимия крови 1. Физико-химические свойства,

химический состав

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

2 курс.

Кровь- это жидкая ткань организма, разновидность соединительной ткани.

СОСТАВ КРОВИ ЧЕЛОВЕКА

Как и любая ткань, кровь состоит из клеток и межклеточного вещества.

Межклеточное вещество крови называется плазмой,она составляет 55% от общего объема крови. Для получения плазмы крови, цельную кровь центрифугируют с антикоагулянтом, например гепарином.

Существует также понятие сыворотка крови, в отличие от плазмы сыворотка крови не содержит фибриноген. Сыворотку крови получают при центрифугировании цельной крови без антикоагулянта.

На форменные элементы приходиться 45% от общего объема крови. Основные клетки крови –эритроциты(составляют 44% от общего объема крови, у мужчин 4,0-5.1*1012/л, у женщин 3,7*-4.7*1012/л),лейкоциты(4,0-8.8*109/л) итромбоциты(180-320*109/л). Среди лейкоцитов выделяют нейтрофилы палочкоядерные (0,040-0,300*109/л, 1-6%), нейтрофилы сегментоядерные (2,0-5,5*109/л, 45-70%), эозинофилы (0,02-0.3*109/л, 0-5%), базофилы (0-0,065*109/л, 0-1%), лимфоциты (1,2-3.0*109/л, 18-40%) и моноциты (0,09-0.6*109/л, 2-9%).

Все жидкости организма имеют общие свойства (объем, плотность, вязкость, рН, осмотическое давление), при этом у них могут быть подчеркнуты специфические свойства (цвет, прозрачность, запах и т.д.).

Общие свойства крови:

  1. Объем в среднем 4,6л или 6—8% от массы тела. У мужчин 5200 мл, у женщин 3900мл.

  2. Удельная плотность цельной крови —1050—1060 г/л, плазмы —1025—1034 г/л, эритроцитов —1080-1097 г/л.

  3. Вязкость крови 4-5 относительных единиц (в 4-5 раз выше вязкости воды). У мужчин – 4,3-5,3 мПа*с, у женщин 3,9-4,9 мПа*с.

  4. рН – отрицательный десятичный логарифм концентрации ионов водорода. рН капиллярной крови = 7,37-7,45, рН венозной крови = 7,32-7,42.

  5. Осмотическое давление = 7,6 атм. (определяется осмотической концентрацией – суммой все частиц находящихся в единице объема. Т=37С.). В основном зависит от NaClи других низкомолекулярных веществ

Специфические свойства крови:

  1. Онкотическое давление =0,03 атм. (определяется концентрацией растворенных в крови белков).

  2. СОЭ: мужчины – 1-10 мм/ч, женщины – 2-15 мм/ч.

  3. Цветовой показатель – 0,86-1.05

  4. Гематокрит – 40—45% (у мужчин 40-48%, у женщин 36-42%). Отношение форменных элементов крови, в процентах, к общему объему крови.

Химический состав крови:

Химический состав растворимых в плазме крови веществ относительно постоянен, так как существуют мощные нервные и гуморальные ме­ханизмы, поддерживающие гомеостаз.

Группа

Вещество

В плазме

В крови

Растворитель

Вода

90-91%

75-85%

Сухой остаток

Органические и неорганические вещества

9-10%

15-25%

Углеводы

Глюкоза

4,22-6,11 ммоль/л

3,88-5,55 ммоль/л

Липиды

Общие липиды

4-8 г/л

Общий холестерин

studfiles.net

Глава 14. БИОХИМИЯ КРОВИ

В спортивной практике анализ крови используется для оценки влияния на организм спортсмена тренировочных и соревновательных нагрузок, оценки функционального состояния спортсмена и его здоровья. Информация, полученная при исследовании крови, помогает тренеру управлять тренировочным процессом. Поэтому специалист в области физической культуры должен иметь необходимые представления о химическом составе крови и об его изменениях под воздействием физических нагрузок различного характера.

Общая характеристика крови

Объем крови у человека около 5 л, что составляет примерно 1/13 часть от объема или массы тела.

По своему строению кровь является жидкой тканью и подобно любой ткани состоит из клеток и межклеточной жидкости.

Клетки крови носят название форменные элементы. К ним относятся красные клетки (эритроциты), белые клетки (лейкоциты) и кровяные пластинки (тромбоциты). На долю клеток приходится около 45 % от объема крови.

Жидкая часть крови называется плазмой. Объем плазмы составляет соответственно примерно 55 % от объема крови. Плазма крови, из которой удален белок фибриноген, называется сывороткой.

Биологические функции крови

Основными функциями крови являются следующие:

1. Транспортная функция. Эта функция обусловлена тем, что кровь постоянно перемещается по кровеносным сосудам и переносит растворенные в ней вещества. Можно выделить три разновидности этой функции.

Трофическая функция. С кровью ко всем органам доставляются вещества, необходимые для обеспечения в них метаболизма (источники энергии, строительный материал для синтезов, витамины, соли и др.).

Дыхательная функция. Кровь участвует в переносе кислорода от легких к тканям и переносе углекислого газа от тканей к легким.

Выделительная функция (экскреторная). С помощью крови конечные продукты метаболизма транспортируются из клеток тканей к выделительным органам с последующим их удалением из организма.

2. Защитная функция. Эта функция, прежде всего, заключается в обеспечении иммунитета – защиты организма от чужеродных молекул и клеток. К защитной функции также можно отнести способность крови к свертыванию. В этом случае осуществляется защита организма от кровопотери.

3. Регуляторная функция. Кровь участвует в обеспечении постоянства температуры тела, в поддержании постоянства рН и осмотического давления. С помощью крови происходит перенос гормонов – регуляторов метаболизма.

Все перечисленные функции направлены на поддержание постоянства условий внутренней среды организма - гомеостаза (постоянства химического состава, кислотности, осмотического давления, температуры и т.п. в клетках организма).

Химический состав плазмы крови.

Химический состав плазмы крови в покое относительно постоянен. Основные составные компоненты плазмы следующие:

Вода - 90 %

Белки - 6-8 %

Прочие органические

вещества - около 2 %

Минеральные вещества - около 1 %

Белки плазмы крови делятся на две фракции: альбумины и глобулины. Соотношение между альбуминами и глобулинами носит название «альбумино-глобулиновый коэффициент» и равно 1,5 – 2. Выполнение физических нагрузок сопровождается вначале увеличением этого коэффициента, а при очень продолжительной работе он снижается.

Альбумины – низкомолекулярные белки с молекулярной массой около 70 тыс. Да. Они выполняют две основные функции.

Во-первых, благодаря хорошей растворимости в воде эти белки выполняют транспортную функцию, перенося с током крови различные нерастворимые в воде вещества (например, жиры, жирные кислоты, некоторые гормоны и др.).

Во-вторых, вследствие высокой гидрофильности альбумины имеют значительную гидратную (водную) оболочку и поэтому задерживают воду в кровяном русле. Задержка воды в кровяном русле необходима в связи с тем, что содержание воды в плазме крови выше, чем в окружающих тканях, и вода в силу диффузии стремится выйти из кровеносных сосудов в ткани. Поэтому при значительном снижении альбуминов в крови (при голодании, при потере белков с мочой при заболеваниях почек) возникают отёки.

Глобулины – это высокомолекулярные белки с молекулярной массой около 300 тыс. Да. Подобно альбуминам глобулины также выполняют транспортную функцию и способствуют задержке воды в кровяном русле, но в этом они существенно уступают альбуминам. Однако у глобулинов

имеются и очень важные функции. Так, некоторые глобулины являются ферментами и ускоряют химические реакции, протекающие непосредственно в кровяном русле. Еще одна функция глобулинов заключается в их участии в свертывании крови и в обеспечении иммунитета (защитная функция).

Бóльшая часть белков плазмы синтезируется в печени.

Прочие органические вещества (кроме белков) обычно делятся на две группы: азотистые и безазотистые.

Азотистые соединения - это промежуточные и конечные продукты обмена белков и нуклеиновых кислот. Из промежуточных продуктов белкового обмена в плазме крови имеются низкомолекулярные пептиды, аминокислоты, креатин. Конечные продукты метаболизма белков это, прежде всего, мочевина (её концентрация в плазме крови довольно высокая – 3,3-6,6 ммоль/л), билирубин (конечный продукт распада гема) и креатинин (конечный продукт распада креатинфосфата).

Из промежуточных продуктов обмена нуклеиновых кислот в плазме крови можно обнаружить нуклеотиды, нуклеозиды, азотистые основания. Конечным продуктом распада нуклеиновых кислот является мочевая кислота, которая в небольшой концентрация всегда содержится в крови.

Для оценки содержания в крови небелковых азотистых соединений часто используется показатель «небелковый азот». Небелковый азот включает азот низкомолекулярных (небелковых) соединений, главным образом перечисленных выше, которые остаются в плазме или сыворотке крови после удаления белков. Поэтому этот показатель также называют «остаточным азотом». Повышение в крови остаточного азота наблюдается при заболеваниях почек, а также при длительной мышечной работе.

К безазотистым веществам плазмы крови относятся углеводы и липиды, а также промежуточные продукты их метаболизма.

Главным углеводом плазмы является глюкоза. Её концентрация у здорового человека в покое и состоянии «натощак» колеблется в узком диапазоне от 3,9 до 6,1 ммоль/л (или 70-110 мг%). Поступает глюкоза в кровь в результате всасывания из кишечника при переваривании пищевых углеводов, а также при мобилизации гликогена печени. Кроме глюкозы в плазме также содержатся в небольших количествах другие моносахариды – фруктоза, галактоза, рибоза, дезоксирибоза и др. Промежуточные продукты углеводного обмена в плазме представлены пировиноградной и молочной кислотами. В покое содержание молочной кислоты (лактата) низкое – 1-2 ммоль/л. Под влиянием физических нагрузок и особенно интенсивных концентрация лактата в крови резко возрастает (даже в десятки раз !).

Липиды представлены в плазме крови жиром, жирными кислотами, фосфолипидами и холестерином. Вследствие нерастворимости в воде все

липиды связаны с белками плазмы: жирные кислоты с альбуминами, жир, фосфолипиды и холестерин с глобулинами. Из промежуточных продуктов жирового обмена в плазме всегда имеются кетоновые тела.

Минеральные вещества находятся в плазме крови в виде катионов (Na+, K+, Ca2+, Mg2+ и др.) и анионов (Сl-, HCO3-, h3PO4-, HPO42-, SO42_, J- и др.). Больше всего в плазме содержится натрия, калия, хлоридов, бикарбонатов. Отклонения в минеральном составе плазмы крови могут наблюдаться при различных заболеваниях и при значительных потерях воды за счет потоотделения при выполнении физической работы.

Содержание основных компонентов крови представлено в табл. 6.

Таблица 6. Основные компоненты крови

Компонент Концентрация в тра- диционных единицах Концентрация в единицах СИ
Б е л к и
Общий белок 6-8 % 60-80 г/л
Альбумины 3,5- 4,5 % 35-45 г/л
Глобулины 2,5 - 3,5 % 25-35 г/л
Гемоглобин у мужчин у женщин 13,5-18 % 12-16 % 2,1-2,8 ммол/л 1,9-2,5 ммоль/л
Фибриноген 200-450 мг% 2-4,5 г/л
Небелковые азотистые вещества
Остаточный азот 20-35 мг% 14-25 ммоль/л
Мочевина 20-40 мг% 3,3-6,6 ммоль/л
Креатин 0,2-1 мг% 15-75 мкмоль/л
Креатинин 0,5-1,2 мг% 44-106 мкмоль/л
Мочевая кислота 2-7 мг% 0,12-0,42 ммоль/л
Билирубин 0,5-1 мг% 8,5-17 мкмоль/л
Безазотистые вещества
Глюкоза(натощак) 70-110 мг% 3,9-6,1 ммоль/л
Фруктоза 0,1-0,5 мг% 5,5-28 мкмоль/л
Лактатартериальная кровь венозная кровь 3-7 мг% 5-20 мг% 0,33-0,78 ммоль/л 0,55-2,2 ммоль/л
Кетоновые тела 0,5-2,5 мг% 5-25 мг/л
Липиды общие 350-800 мг% 3,5-8 г/л
Триглицериды 50-150 мг% 0,5-1,5 г/л
Холестерин 150-300 мг% 4-7,8 ммоль/л
Минеральные вещества
Натрий плазма эритроциты 290-350 мг% 31-50 мг% 125-150 ммоль/л 13,4-21,7 ммоль/л
Калийплазма эритроциты 15-20 мг% 310-370 мг% 3,8-5,1 ммоль/л 79,3-99,7 ммоль/л
Хлориды 340-370 мг% 96-104 ммоль/л
Кальций 9-11 мг% 2,2-2,7 ммоль/л
       

Красные клетки (эритроциты)

Эритроциты составляют основную массу клеток крови. В 1 мм3 (мкл[1]) крови обычно содержится 4-5 млн. красных клеток. Образуются эритроциты в красном костном мозге, функционируют в кровяном русле и разрушаются, главным образом, в селезенке и в печени. Жизненный цикл этих клеток составляет 110-120 дней.

Эритроциты представляют собой двояковогнутые клетки, лишенные ядер, рибосом и митохондрий. В связи с этим в них не происходят такие процессы как синтез белка и тканевое дыхание. Основным источником энергии для эритроцитов является анаэробный распад глюкозы (гликолиз).

Основным компонентом красных клеток является белок гемоглобин. На его долю приходится 30 % от массы эритроцита или 90 % от сухого остатка этих клеток.

 
 
По своему строению гемоглобин является хромопротеидом. Его молекула обладает четвертичной структурой и состоит из четырех субъединиц. Каждая субъединица содержит один полипептид и один гем. Субъединицы отличаются друг от друга только строением полипептидов. Гем представляет собою сложную циклическую структуру из четырех пиррольных колец, содержащую в центре атом двухвалентного железа (Fe2+):

Основная функция эритроцитов –дыхательная. С участием эритроцитов осуществляется перенос кислорода от легких к тканям и углекислого газа от тканей к легким.

В капиллярах легких парциальное давление кислорода около 100 мм рт. ст. (парциальное давление это часть общего давления смеси газов, приходящаяся на отдельный газ из этой смеси. Например, при атмосферном давлении 760 мм рт. ст. на долю кислорода приходится 152 мм рт. ст., т.е. 1/5 часть, так как в воздухе обычно содержится 20 % кислорода). При таком давлении практически весь гемоглобин связывается с кислородом:

Hb + O2 ¾® HbO2

Гемоглобин Оксигемоглобин

Присоединяется кислород непосредственно к атому железа, входящему в состав гема, причем взаимодействовать с кислородом может только двухвалентное (восстановленное) железо. Поэтому различные окислители (например, нитраты, нитриты и т.п.), превращая железо из двухвалентного в трехвалентное (окисленное), нарушают дыхательную функцию крови.

Образовавшийся комплекс гемоглобина с кислородом - оксигемоглобин с током крови переносится в различные органы. Вследствие потребления кислорода тканями парциальное давление его здесь намного меньше, чем в легких. При низком парциальном давлении происходит диссоциация оксигемоглобина:

HbO2 ¾® Hb + O2

Степень распада оксигемоглобина зависит от величины парциального давления кислорода: чем меньше парциальное давление, тем больше отщепляется от оксигемоглобина кислорода. Например, в мышцах в состоянии покоя парциальное давление кислорода примерно 45 мм рт. ст. При таком давлении диссоциации подвергается только около 25 % оксигемо-

глобина. При работе умеренной мощности парциальное давление кислорода в мышцах примерно 35 мм рт. ст. и распаду подвергается уже около 50 % оксигемоглобина. При выполнении интенсивных нагрузок парциальное давление кислорода в мышцах снижается до 15-20 мм рт. ст., что вызывает более глубокую диссоциацию оксигемоглобина (на 75 % и более). Такой характер зависимости диссоциации оксигемоглобина от парциального давления кислорода позволяет значительно увеличить снабжение мышц кислородом при выполнении физической работы.

Усиление диссоциации оксигемоглобина также наблюдается при повышении температуры тела и увеличении кислотности крови (например, при поступлении в кровь больших количеств молочной кислоты при интенсивной мышечной работе), что тоже способствует лучшему снабжению тканей кислородом.

В целом за сутки человек, не выполняющий физической работы, использует 400-500 л кислорода. При высокой двигательной активности потребление кислорода значительно возрастает.

Транспорт кровью углекислого газа осуществляется из тканей всех органов, где происходит его образование в процессе катаболизма, в легкие, из которых он выделяется во внешнюю среду.

Бóльшая часть углекислого газа переносится кровью в форме солей - бикарбонатов калия и натрия. Превращение CO2 в бикарбонаты происходит в эритроцитах с участием гемоглобина. В эритроцитах накапливаются бикарбонаты калия (KHCO3), а в плазме крови - бикарбонаты натрия (NaHCO3). С током крови образовавшиеся бикарбонаты поступают в легкие и превращаются там снова в углекислый газ, который удаляется из легких с

выдыхаемым воздухом. Это превращение происходит также в эритроцитах, но уже с участием оксигемоглобина, возникающего в капиллярах легких за счет присоединения кислорода к гемоглобину (см. выше).

Биологический смысл такого механизма переноса кровью углекислого газа заключается в том, что бикарбонаты калия и натрия обладают высокой растворимостью в воде, и поэтому в эритроцитах и в плазме они могут находиться в значительно бóльших количествах по сравнению с углекислым газом.

Небольшая часть CO2 может переноситься кровью в физически растворенном виде, а также в комплексе с гемоглобином, называемым карбгемоглобином.

В состоянии покоя в сутки образуется и выделяется из организма 350-450 л CO2. Выполнение физических нагрузок приводит к увеличению образования и выделения углекислого газа.

Белые клетки (лейкоциты)

В отличие от красных клеток лейкоциты являются полноценными клетками с большим ядром и митохондриями, и поэтому в них протекают такие важнейшие биохимические процессы как синтез белков и тканевое дыхание.

В состоянии покоя у здорового человека в 1 мм3 крови содержится 6-8 тыс. лейкоцитов. При заболеваниях количество белых клеток в крови может как уменьшаться (лейкопения), так и увеличиваться (лейкоцитоз). Лейкоцитоз может наблюдаться и у здоровых людей, например, после приема пищи или при выполнении мышечной работы (миогенный лейкоцитоз). При миогенном лейкоцитозе количество лейкоцитов в крови может повыситься до 15-20 тыс./мм3 и более.

Различают три вида лейкоцитов: лимфоциты (25-26 %), моноциты (6-7 %) и гранулоциты ( 67-70 %).

Лимфоциты образуются в лимфатических узлах и селезенке, а моноциты и гранулоциты - в красном костном мозге.

Лейкоциты выполняют защитную функцию, участвуя в обеспечении иммунитета.

В самом общем виде иммунитет - это защита организма от всего «чужого». Под «чужим» подразумеваются различные чужеродные высокомолекулярные вещества, обладающие специфичностью и уникальностью своего строения и отличающиеся вследствие этого от собственных молекул организма.

В настоящее время выделяют две формы иммунитета: специфический и неспецифический. Под специфическим обычно подразумевается собственно иммунитет, а неспецифический иммунитет – это различные факторы неспецифической защиты организма.

Система специфического иммунитета включает тимус (вилочковая железа), селезенку, лимфатические узлы, лимфоидные скопления (в носоглотке, миндалинах, аппендиксе и т. п.) и лимфоциты. Основу этой системы составляют лимфоциты.

Любое чужеродное вещество, на которое способна реагировать иммунная система организма, обозначается термином антиген. Антигенными свойствами обладают все «чужие» белки, нуклеиновые кислоты, многие полисахариды и сложные липиды. Антигенами могут быть также бактериальные токсины и целые клетки микроорганизмов, точнее макромолекулы, входящие в их состав. Кроме этого, антигенную активность могут проявлять и низкомолекулярные соединения, такие как стероиды, некоторые лекарства при условии их предварительного связывания с белком-носителем, например, альбумином плазмы крови. (На этом основано обнаружение иммунохимичекским методом некоторых допинговых препаратов при проведении допинг-контроля).

Поступивший в кровяное русло антиген распознается особыми лейкоцитами - Т-лимфоцитами, которые затем стимулируют превращение другого вида лейкоцитов - В-лимфоцитов в плазматические клетки, которые далее в селезенке, лимфоузлах и костном мозге синтезируют особые белки - антитела или иммуноглобулины. Чем крупнее молекула антигена, тем больше образуется различных антител в ответ на его поступление в организм. У каждого антитела имеются два связывающих участка для взаимодействия со строго определенным антигеном. Таким образом, каждый антиген вызывает синтез строго специфических антител.

Образовавшиеся антитела поступают в плазму крови и связываются там с молекулой антигена. Взаимодействие антител с антигеном осуществляется путем образования между ними нековалентных связей. Это взаимодействие аналогично образованию фермент-субстратного комплекса при ферментативном катализе, причем связывающий участок антитела соответствует активному центру фермента. Поскольку большинство антигенов являются высокомолекулярными соединениями, то к антигену одновременно присоединяется много антител.

Образовавшийся комплекс антиген-антитело далее подвергается фагоцитозу. Если антигеном является чужеродная клетка, то комплекс антиген-антитело подвергается воздействию ферментов плазмы крови под общим названием система комплемента. Эта сложная ферментативная система в конечном итоге вызывает лизис чужеродной клетки, т.е. её разрушение. Образовавшиеся продукты лизиса далее также подвергаются фагоцитозу.

Поскольку в ответ на поступления антигена антитела образуются в избыточных количествах, их значительная часть остается на длительное время в плазме крови, во фракции g-глобулинов. У здорового человека в крови содержится огромное количество различных антител, образовавшихся вследствие контактов с очень многими чужеродными веществами и микроорганизмами. Наличие в крови готовых антител позволяет организму быстро обезвреживать вновь поступающие в кровь антигены. На этом явлении основано проведение профилактических прививок.

Другие формы лейкоцитов - моноциты и гранулоциты участвуют в фагоцитозе. Фагоцитоз можно рассматривать как неспецифическую защитную реакцию, направленную, в первую очередь, на уничтожение поступающих в организм микроорганизмов. В процессе фагоцитоза моноциты и гранулоциты поглощают бактерии, а также крупные чужеродные молекулы и разрушают их своими лизосомальными ферментами. Фагоцитоз также сопровождается образованием активных форм кислорода, так называемых свободных радикалов кислорода, которые, окисляя липоиды бактериальных мембран, способствуют уничтожению микроорганизмов.

Как отмечалось выше, фагоцитозу также подвергаются комплексы антиген-антитело.

К факторам неспецифической защиты относятся кожные и слизистые барьеры, бактерицидность желудочного сока, воспаление, ферменты (лизоцим, протеиназы, пероксидазы), противовирусный белок - интерферон и др.

Регулярные занятия спортом и оздоровительной физкультурой стимулируют иммунную систему и факторы неспецифической защиты и тем самым повышают устойчивость организма к действию неблагоприятных факторов внешней среды, способствуют снижению общей и инфекционной заболеваемости, увеличивают продолжительность жизни.

Однако исключительно высокие физические и эмоциональные перегрузки, свойственные спорту высших достижений, оказывают на иммунитет неблагоприятное влияние. Нередко у спортсменов высокой квалификации наблюдается повышенная заболеваемость, особенно в период ответственных соревнований (именно в это время физическое и эмоциональное напряжение достигает своего предела!). Очень опасны чрезмерные нагрузки для растущего организма. Многочисленные данные свидетельствуют, что иммунная система детей и подростков более чувствительна к таким нагрузкам.

В связи с этим важнейшей медико-биологической задачей современного спорта является коррекция иммунологических нарушений у спортсменов высокой квалификации путем применения различных иммуностимулирующих средств.

Кровяные пластинки (тромбоциты).

Тромбоциты - это безъядерные клетки, образующиеся из цитоплазмы мегакариоцитов - клеток костного мозга. Количество тромбоцитов в крови обычно 200-400 тыс./мм3. Основная биологическая функция этих форменных элементов - участие в процессе свертывания крови.

Свертывание крови - сложнейший ферментативный процесс, ведущий к образованию кровяного сгустка - тромба с целью предупреждения кровопотери при повреждении кровеносных сосудов.

В свертывании крови участвуют компоненты тромбоцитов, компоненты плазмы крови, а также вещества, поступающие в кровяное русло из окружающих тканей. Все вещества, участвующие в этом процессе, получили название факторы свертывания. По строению все факторы свертывания кроме двух (ионы Са2+ и фосфолипиды) являются белками и синтезируются в печени, причем в синтезе ряда факторов участвует витамин К.

Белковые факторы свертывания поступают в кровяное русло и циркулируют в нем в неактивном виде - в форме проферментов (предшественников ферментов), которые при повреждении кровеносного сосуда способны стать активными ферментами и участвовать в процессе свертывания крови. Благодаря постоянному наличию проферментов, кровь находится все время в состоянии «готовности» к свертыванию.

В самом упрощенном виде процесс свертывания крови можно условно разделить на три крупных этапа.

На первом этапе, начинающемся при нарушении целостности кровеносного сосуда, тромбоциты очень быстро (в течение секунд) накапливаются в месте повреждения и, слипаясь образуют своего рода «пробку», которая ограничивает кровотечение. Часть тромбоцитов при этом разрушается, и из них в плазму крови выходят фосфолипиды (один из факторов свертывания). Одновременно в плазме за счет контакта с поврежденной поверхностью стенки сосуда или с каким либо инородным телом (например, игла, стекло, лезвие ножа и т.п.) происходит активация еще одного фактора свертывания - фактора контакта. Далее с участием этих факторов, а также некоторых других участников свертывания формируется активный ферментный комплекс, называемый протромбиназой или тромбокиназой. Такой механизм активации протромбиназы называется внутренним, так как все участники этого процесса содержатся в крови. Активная протромбиназа также образуется и по внешнему механизму. В этом случае требуется участие фактора свертывания, отсутствующего в самой крови. Этот фактор имеется в тканях, окружающих кровеносные сосуды, и попадает в кровяное русло лишь при повреждении сосудистой стенки. Наличие двух независимых механизмов активирования протромбиназы повышает надежность системы свертывания крови.

На втором этапе под влиянием активной протромбиназы происходит превращение белка плазмы протромбина (это тоже фактор свертывания) в активный фермент - тромбин.

Третий этап начинается с воздействия образовавшегося тромбина на белок плазмы - фибриноген. От фибриногена отщепляется часть молекулы и фибриноген превращается в более простой белок - фибрин-мономер, молекулы которого спонтанно, очень быстро, без участия каких либо ферментов подвергаются полимеризации с образованием длинных цепей, называемых фибрином-полимером. Образовавшиеся нити фибрина-полимера являются основой кровяного сгустка - тромба. Вначале формируется студнеобразный сгусток, включающий в себя кроме нитей фибрина-полимера еще плазму и клетки крови. Далее из тромбоцитов, входящих в этот сгусток, выделяются особые сократительные белки (типа мышечных), вызывающие сжатие (ретракцию) кровяного сгустка.

В результате перечисленных этапов образуется прочный тромб, состоящий из нитей фибрина-полимера и клеток крови. Этот тромб располагается в поврежденном месте сосудистой стенки и препятствует кровотечению.

Все этапы свертывания крови протекают с участием ионов кальция.

В целом процесс свертывания крови занимает 4-5 минут.

В течение нескольких дней после образования кровяного сгустка, после восстановления целостности сосудистой стенки происходит рассасывание теперь уже не нужного тромба. Этот процесс называется фибринолизом и осуществляется путем расщепления фибрина, входящего в состав кровяного сгустка, под действием фермента плазмина (фибринолизина). Данный фермент образуется в плазме крови из своего предшественника - профермента плазминогена под влиянием активаторов, которые находятся в плазме или же поступают в кровяное русло из окружающих тканей. Активации плазмина также способствует возникновение при свертывании крови фибрина-полимера.

В последнее время выяснено, что в крови еще имеется противосвертывающая система, которая ограничивает процесс свертывания только поврежденным участком кровяного русла и не допускает тотального свертывания всей крови. В образовании противосвертывающей системы участвуют вещества плазмы, тромбоцитов и окружающих тканей, имеющие общее название антикоагулянты. По механизму действия большинство антикоагулянтов являются специфическими ингибиторами, действующими на факторы свертывания. Наиболее активными антикоагулянтами являются антитромбины, препятствующие превращению фибриногена в фибрин. Наиболее изученным ингибитором тромбина является гепарин, который предупреждает свертывание крови как in vivo, так и in vitro.

К противосвертывающей системе можно также отнести систему фибринолиза.

Кислотно-основной баланс крови

В покое у здорового человека кровь имеет слабощелочную реакцию: рН капиллярной крови (её обычно берут из пальца руки) составляет примерно 7,4 , рН венозной крови равняется 7,36. Более низкое значение водородного показателя венозной крови объясняется бóльшим содержанием в ней углекислоты, возникающей в процессе метаболизма.

Постоянство рН крови обеспечивается находящимися в крови буферными системами. Основными буферами крови являются: бикарбонатный (h3CO3/NaHCO3), фосфатный (Nah3PO4/Na2HPO4), белковый и гемоглобиновый. Самой мощной буферной системой крови оказалась гемоглобиновая: на её долю приходится 3/4 всей буферной емкости крови (механизм буферного действия см. в курсе химии).

У всех буферных систем крови преобладает оснóвный (щелочной) компонент, вследствие чего они нейтрализуют значительно лучше поступающие в кровь кислоты, чем щелочи. Эта особенность буферов крови имеет большое биологическое значение, поскольку в ходе метаболизма в качестве промежуточных и конечных продуктов часто образуются различные кислоты (пировиноградная и молочная кислоты - при распаде углеводов; метаболиты цикла Кребса и b-окисления жирных кислот; кетоновые тела, угольная кислота и др.). Все возникающие в клетках кислоты могут попасть в кровяное русло и вызвать сдвиг рН в кислую сторону. Наличие большой буферной емкости по отношению к кислотам у буферов крови позволяет им нейтрализовать значительные количества кислых продуктов, поступающих в кровь, и тем самым способствовать сохранению постоянного уровня кислотности.

Суммарное содержание в крови оснóвных компонентов всех буферных систем обозначается термином «Щелочной резерв крови». Чаще всего щелочной резерв рассчитывается путем измерения способности крови связывать СО2. В норме у человека его величина составляет 50-65 об. % , т.е. каждые 100 мл крови могут связать от 50 до 65 мл углекислого газа.

В поддержании постоянства рН крови также участвуют органы выделения (почки, легкие, кожа, кишечник). Эти органы удаляют из крови избыток кислот и оснований.

Благодаря буферным системам и выделительным органам колебания величины рН в физиологических условиях незначительны и не опасны для организма.

Однако при нарушениях метаболизма (при заболеваниях, при выполнении интенсивных мышечных нагрузок) может резко повыситься образование в организме кислых или щелочных веществ (в первую очередь, кислых!). В этих случаях буферные системы крови и экскреторные органы не в состоянии предотвратить их накопление в кровяном русле и удержать значение рН на постоянном уровне. Поэтому при избыточном образовании в организме различных кислот кислотность крови возрастает, а величина водородного показателя снижается. Такое явление получило название ацидоз. При ацидозе рН крови может уменьшаться до 7,0 - 6,8 ед. (Следует помнить, что сдвиг рН на одну единицу соответствует изменению кислотности в 10 раз). Снижение величины рН ниже 6,8 несовместимо с жизнью.

Значительно реже может происходить накопление в крови щелочных соединений, рН крови при этом увеличивается. Это явление называется алкалоз. Предельное возрастание рН - 8,0.

У спортсменов часто встречается ацидоз, вызванный образованием в мышцах при интенсивной работе больших количеств молочной кислоты (лактата).

Глава 15.БИОХИМИЯ ПОЧЕК И МОЧИ

Моча, также как и кровь, часто является объектом биохимических исследований, проводимых у спортсменов. По данным анализа мочи тренер может получить необходимые сведения о функциональном состоянии спортсмена, о биохимических сдвигах, возникающих в организме при выполнении физических нагрузок различного характера. Поскольку при взятии крови для анализа возможно инфицирование спортсмена (например, заражение гепатитом или СПИД-ом), то в последнее время всё предпочтительнее становится исследование мочи. Поэтому тренер или преподаватель физического воспитания должны обладать информацией о механизме образования мочи, об её физико-химических свойствах и химическом составе, об изменении показателей мочи при выполнении тренировочных и соревновательных нагрузок.

[1] 1 мкл = 1·10-6 л

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru

Биохимический анализ крови - что показывает, таблица норм и расшифровка результатов, как подготовиться

Кровь — самая уникальная структура из всего организма. Являясь по сути разновидностью соединительной ткани, она разительно отличается от таковой, входящей в состав других органов. Кровь переносит кислород, питательные и отработанные вещества, химические сигналы — гормоны. Кроме того, она является частью иммунной системы, защищая организм от инфекций. Анализ биохимического состава крови несёт ценную информацию о различных отклонениях и заболеваниях.

Биохимия крови: основные особенности

Кровь содержит информацию обо всех особенностях обмена веществ в организме. По количеству различных химических соединений можно с большой достоверностью судить о работе практически всех органов: печени, почек, кишечника, лёгких, сердца, головного мозга, эндокринных желёз.

Обмен веществ — основной вид жизнедеятельности организма. Он состоит из нескольких компонентов:

  • пигментный обмен. Он происходит в печени, где перерабатывается основной компонент погибших красных клеток крови — гемоглобин. В результате образуются различные соединения пигмента билирубина;

    Гемоглобин — родоначальник пигментного обмена в организме

  • белковый обмен. Процесс ежесекундно происходит в скелетных мышцах, сердце и печени. В результате в крови циркулирует набор белков:
    • альбумины, помогающие крови переносить различные вещества;
    • глобулины, являющиеся основными переносчиками гормонов;
    • гамма-глобулины, выделяемые иммунными клетками для защиты организма от инфекций;
    • С-реактивный белок, появляющийся в организме на фоне воспалительного процесса;
    • ферменты — особые белки, являющиеся ускорителями химических превращений в организме:
      • аспартатаминотрансфераза (АсАТ);
      • аланинаминотранфераза (АлАТ);
      • щелочная фосфатаза (ЩФ);
      • гамма-глутаминтранспептидаза (ГГТП);
      • альфа-амилаза;

        В организме существует множество ферментов, ускоряющих химические превращения веществ

  • углеводный обмен. Основным показателем является уровень наиболее простого по химическому строению сахара — глюкозы;
  • жировой обмен. Процесс происходит в печени и заключается в формировании холестерина и его разновидностей: липопротеинов высокой (ЛВП) и низкой плотности (ЛНП), триглицеридов;

    Липопротеины низкой плотности — основа атеросклеротических бляшек в сосудах

  • азотистый обмен. Процесс происходит в ткани почек. Здесь образуются отработанные вещества, подлежащие удалению из организма: мочевина, креатинин, мочевая кислота;
  • электролитный обмен. Процесс происходит в скелетных мышцах, сердце и почках. Именно эти органы регулируют содержание в крови основные виды электролитов: натрий, калий, кальций.

Подробнее о причинах и симптомах повышенного уровня холестерина в крови читайте в статье: https://krasnayakrov.ru/analizy-krovi/povyshen-holesterin.html

Биохимический анализ крови расскажет о качестве работы фактически всех органов и систем. Любой патологический процесс в организме вызывает изменения в составе крови. Именно поэтому определение биохимических показателей входит в алгоритм диагностики почти всех видов заболеваний, поражающих различные органы:

  • инфекционных;
  • воспалительных;
  • аутоиммунных, обусловленных агрессией иммунитета против тканей;
  • онкологических;
  • аллергических;

    Аллергическая реакция вызывает изменение биохимического состава крови

  • болезней обмена веществ;
  • наследственных, в том числе врождённого дефицита ферментов.

Биохимический анализ крови относится к тем видам исследований, точность результата которых во многом зависит от правильной подготовки пациента перед забором материала. Последняя начинается за несколько дней до забора крови:

  • за три-четыре дня до сдачи крови на анализ необходимо исключить из рациона алкоголь, жирные и жареные продукты, а также свести к минимуму количество употребляемого чая и кофе. Эти меры позволят получить правдивые сведения о работе печени;
  • переходить на полный отказ пищи за сутки-двое до исследования не рекомендуется. Подобные действия могут вызвать искажение результатов, в частности, уровня билирубина, сахара и мочевой кислоты;
  • процедуры, назначенные физиотерапевтом, необходимо отменить за двое суток до сдачи крови. Физические факторы, лежащие в основе лечебного действия методик, могут повлиять на уровень биохимических показателей. К таковым относится и рентгенологическое исследование;
  • уровень выполняемой физической нагрузки также влияет на биохимический обмен в скелетной мышечной ткани. За двое суток до сдачи крови необходимо снизить физическую активность;
  • сдача крови происходит натощак. Принимать пищу необходимо не позднее 12 часов до предполагаемого срока забора материала для биохимического исследования;
  • приём жидкости в день забора крови ограничивается небольшим количеством негазированной воды;
  • обо всех принимаемых лекарственных препаратах необходимо уведомить лечащего врача. Эти сведения помогут специалисту правильно трактовать выявленные изменения. В особенности это обстоятельство касается больных сахарным диабетом и пациентов, получающих препараты для снижения уровня холестерина в крови.

Биохимический анализ крови в настоящее время является рутинной диагностической процедурой. Исследование осуществляется лабораториями поликлиник, стационаров, диспансеров, частных и государственных медицинских центров.

Забор материала производится персоналом манипуляционных кабинетов. Весь процесс сдачи крови не превышает десяти минут. Чаще всего для исследования используется кровь из локтевой вены, доступ к которой осуществляется проще всего. После наложения жгута выполняется прокол вены. Полученная кровь помещается в пробирку и доставляется в лабораторию.

Учёт результата во многих клиниках автоматизирован, пациенту выдаётся распечатка с аппарата, на котором проводилось исследование. В ней указывается нормативный интервал каждого показателя, поскольку он зависит от конкретных реактивов. Весь процесс обработки результатов занимает около часа.

В настоящее время определение биохимических показателей крови осуществляется при помощи специальных аппаратов

Нормы показателей

Для каждого показателя, определяемого при биохимическом анализе, существует нормативный интервал. С помощью него специалист расшифровывает полученные данные. Необходимо помнить, что для пациентов различного пола и возраста показатели могут разниться.

Нормы биохимических показателей крови для взрослых — таблица

При расшифровке биохимического анализа крови специалист опирается на нормативные показатели, характерные для ребёнка определённого возраста. У детей периода новорождённости и первого года жизни обмен веществ и деятельность большинства ферментов далеки от совершенства. С течением времени биохимические показатели ребёнка все сильнее приближаются к значениям, характерным для взрослого человека.

Нормы биохимических показателей крови для детей различного возраста — таблица

Беременность — важный этап в жизни каждой женщины. Вынашивание ребёнка с первых дней вносит коррективы в обмен веществ материнского организма. Ему необходимо поставить плоду строительный материал, снабдить питательными компонентами и вывести отработанные химические соединения. Эти процессы неизбежно приводят к напряжённой работе фактически всех систем организма: дыхательной, сердечно-сосудистой, мочевыделительной, эндокринной. В связи с этим обстоятельством биохимические показатели беременной женщины имеют свои нормативные интервалы.

Нормы биохимических показателей крови для беременных в зависимости от срока — таблица

Причины изменений биохимических показателей

Любая проблема, возникшая в организме, может затронуть деятельность одного или нескольких органов. Это обстоятельство приводит к тому, что практически все заболевания вызывают изменения биохимических показателей.

Общий белок и его разновидности

Общий белок является, пожалуй, одним из самых стабильных показателей. За его адекватное количество в крови отвечает печень. Именно её клетки — гепатоциты — производят основные разновидности белков крови — альбумины, альфа- и бета-глобулины. Только гамма-глобулины являются продуктом иммунитета.

Уменьшение количества общего белка и альбуминовой фракции может быть следствием двух проблем: либо эти химические соединения не вырабатываются в печени, либо их организм теряет в большом количестве. Первая обычно появляется при тяжёлых болезнях печени: воспалении (гепатите) или разрастании рубцовой ткани (циррозе). Кроме того, хроническое нарушение кровообращения в органе вследствие тяжёлой сердечной патологии.

Разрастание рубцовой ткани (цирроз) существенно нарушает работу печени

Теряться белок может в трёх случаях: при массивных кровотечениях, ожогах большой поверхности тела и при грозном почечном заболевании — гломерулонефрите. В этой ситуации повреждается почечный фильтр, в результате за сутки организм теряет большое количество белка. Увеличение количества белка в большинстве случаев является следствием сгущения крови, например, при обезвоживании.

Гломерулонефрит поражает почечный фильтр и становится причиной потери белка

Количество гамма-глобулинов напрямую связано с деятельностью иммунитета. Повышение их количества в крови обычно говорит о текущем инфекционном, воспалительном или аутоиммунном заболевании. Последнее связано с агрессией иммунной системы против собственных тканей и органов.

О том, какую роль играет общий белок в организме и о причинах изменения его показателей, подробно написано здесь: https://krasnayakrov.ru/analizy-krovi/obshii-belok.html

Мочевина и креатинин

Мочевина и креатинин — взаимосвязанные биохимические показатели. Оба вещества образуются в результате распада белка. Именно эти два вещества являются основным показателем качества работы почек по выведению шлаков из организма. Диагностическое значение имеет высокий уровень мочевины и креатинина крови. Подобная проблема чаще всего является следствием тяжёлых почечных заболеваний: воспаления лоханок (пиелонефрита), клубочков (гломерулонефрита), расширения лоханок (гидронефроза), мочекаменной болезни. При длительном течении этих патологий логическим итогом становится хроническая почечная недостаточность. Прямым следствием этого обстоятельства является повышение уровня мочевины и креатинина.

Хроническая почечная недостаточность неизбежно приводит к повышению уровня мочевины и креатинина

Хроническая почечная недостаточность — видео

Мочевая кислота

Мочевая кислота — показатель, напрямую связанный с обменом белков в организме. Высокий уровень этого вещества в крови чаще всего является следствием дефекта ферментов, участвующих в химических превращениях. Мочевая кислота в этом случае может откладываться в суставах, кожных покровах, или образовывать конкременты в почках. В первой ситуации развивается подагра, во второй — мочекаменная болезнь.

Подагра приводит к накоплению кристаллов мочевой кислоты в суставах

Подагра — видео

Глюкоза

Глюкоза — главный источник энергии в организме. Именно он в первую очередь используется для удовлетворения нужд организма: мышечной работы, переваривания пищи, деятельности головного мозга. Для человека опасно как снижение, так и повышение уровня глюкозы. Низкий уровень вещества чаще всего обусловлен голоданием и может вызвать необратимое повреждение головного мозга. Существует ряд наследственных заболеваний ферментов печени — гликогенозы, для которых характерен постоянный низкий уровень глюкозы в крови.

Повышение глюкозы в крови несёт не меньшую опасность для человека. Чаще всего причина кроется в абсолютном или относительном дефиците инсулина. Этот гормон вырабатывают специальные клетки поджелудочной железы. Дефицит инсулина называется сахарным диабетом. Высокое содержание глюкозы в крови также может серьёзно повредить деятельности головного мозга и даже вызвать коматозное состояние.

Диабет 1 и 2 типа вызван дефицитом гормона инсулина

Холестерин, триглицериды, ЛНП, ЛВП

Жировой обмен в организме — генетически запрограммированные химические превращения жиров, происходящие в печени. Одним из основных его компонентов является холестерин. Он чрезвычайно необходим для выработки некоторых витаминов, гормонов и желчных кислот. Повышенный уровень опасен для организма тем, что холестерин может откладываться в стенке сосудов с формированием сужений — атеросклеротических бляшек. Низкий уровень холестерина чаще всего связан с применением специфических холестеринснижающих препаратов — статинов.

Причиной атеросклероза являются холестериновые бляшки в стенках сосудов

Триглицериды — ещё один продукт жирового обмена, образующийся в печени. Этот компонент также осаждается в стенках сосудов. Повышенный уровень триглицеридов в крови указывает на высокий риск поражения сосудов атеросклеротическими бляшками. Аналогичная картина характерна для липидов низкой плотности (ЛНП). ЛВП призваны препятствовать образованию бляшек в сосудах. Низкий уровень этого вещества также указывает на риск атеросклероза.

Анализ крови на содержание холестерина — видео

Билирубин и его разновидности

Билирубин — продукт распада белка гемоглобина. Последний является основным компонентом красных клеток крови, который переносит кислород от лёгких ко всем остальным тканям и органам. Билирубин — очень токсичное соединение. Его обезвреживанием и выводом из организма занимается печень. Количество непрямого билирубина серьёзно повышается при воспалительных и других тяжёлых заболеваниях печени — гепатите, циррозе. Кроме того, этот вид билирубина в большом количестве образуется при массивной гибели красных клеток крови — гемолизе. В период новорождённости она может происходить по причине иммунологического конфликта эритроцитов плода и иммунных клеток материнского организма (гемолитической болезни новорождённых). Повышение прямого и непрямого билирубина указывает на блокаду отведения желчи из печени. Причина последней может крыться в опухолевом поражении или наличии конкрементов.

Серповидноклеточная анемия — наследственная болезнь, приводящая к образованию дефектных форм красных клеток крови

Тест на билирубин — видео

АСТ, АЛТ

АСТ и АЛТ — ферменты, которые содержатся внутри клеток печени. Эти биохимические показатели повышаются при разрушении гепатоцитов. Оно может быть вызвано гепатитом, циррозом, опухолью, аутоиммунными заболеваниями. Диагностически значимым считается повышение показателя в несколько раз по сравнению с нормативным интервалом.

АСТ и АЛТ содержатся внутри клеток печени

Анализ крови на АСТ и АЛТ — видео

Щелочная фосфатаза, ГГТП

Эти два фермента, являющиеся показателями работы желчевыводящих путей, тесно взаимосвязаны. Превышение нормативных уровней говорит о существующей проблеме с отведением желчи (холестазе).

Щелочная фосфатаза часто повышена при заболеваниях желчевыводящих путей

Почему бывает повышена щелочная фосфотаза и как это лечить — читайте здесь: https://krasnayakrov.ru/analizy-krovi/shchelochnaya-fosfataza-povyshena.html

Натрий, калий

Натрий и калий являются теми показателями, на которых держится вся жизнедеятельность организма. За их стабильный уровень организм борется до последнего. Снижение или завышение нормативных значений чрезвычайно опасно. Высокий уровень натрия может вызвать отёк ткани головного мозга и коматозное состояние. Низкий уровень также чреват проблемами — массивным разрушением красных клеток крови эритроцитов. Низкий уровень калия может стать причиной внезапной остановки сердца вследствие нарушения электрической деятельности сердечной мышцы.

Калий содержится внутри клетки, натрий преобладает в составе внеклеточной жидкости

Содержание калия, также как и натрия, строго регулируется почками и гормоном альдостероном. Высокий уровень этих биохимических показателей является следствием тяжёлого заболевания — почечной недостаточности. Завышение уровня калия также может вызвать остановку сердца и другие нарушения ритма.

Биохимический анализ крови — современный метод диагностики состояния организма и выявления многих видов заболеваний. Правильная оценка его результатов возможна только специалистом после сопоставления всех сопутствующих изменений.

  • Автор: Елена Тимофеева
  • Распечатать

krasnayakrov.ru

Биохимический состав крови

Кровь ‒ это биологическая жидкость, которая обеспечивает органы и ткани питательными веществами и оксигеном. Вместе с лимфой она образует систему циркулирующих в организме жидкостей. Выполняет ряд жизненно важных функций: питательную, выделительную, защитную, дыхательную, механическую, регуляторную, терморегулирующую.

Состав крови человека с возрастом существенно изменяется. Следует сказать, что у детей очень интенсивный обмен веществ, поэтому в их организме ее значительно больше  приходится на 1 кг массы тела по сравнению с взрослыми. В среднем у взрослого человека около пяти-шести литров данной биологической жидкости.

В состав крови входит плазма (жидкая часть) и форменные элементы (эритроциты, лейкоциты, тромбоциты). От концентрации красных кровяных телец зависит ее цвет. Плазма, лишенная белка (фибриногена), называется сывороткой крови. Эта биологическая жидкость имеет слабощелочную реакцию.

Биохимический состав крови – буферные системы. Основными кровяными буферами являются гидрокарбонатная (7% общей массы), фосфатная (1%), белковая (10%), гемоглобиновая и оксигемоглобиновая (до 81%), а также кислотная (около 1%) системы. В плазме преобладают гидрокарбонатная, фосфатная, белковая и кислотная, в эритроцитах ‒ гидрокарбонатная, фосфатная, в гемоглобиновых – оксигемоглобиновая и кислотная. Состав кислотной буферной системы представлен органическими кислотами (ацетатная, лактатная, пировиноградная и т.д.) и их солями с сильными основаниями. Наибольшее значение имеют гидрокарбонатная и гемоглобиновая буферные системы.

Химический состав крови. Кровь характеризуется постоянством химического состава. Плазма составляет 55-60% общего объема крови и на 90 % состоит из воды. Сухой остаток составляют органические (9%) и минеральные (1%) вещества. Основными органическими веществами являются белки, большинство которых синтезируются в печени.

Белковый состав крови. Общее содержание белков в крови млекопитающих колеблется в пределах от 6 до 8 %. Известно около ста белковых компонентов плазмы. Условно их можно разделить на три фракции: альбумины, глобулины и фибриноген. Белки плазмы, которые остались после удаления фибринагена, называют сывороточными белками крови.

Альбумины принимают участие в транспортировке многих питательных и биологически активных веществ (углеводов, жирных кислот, витаминов, неорганических ионов, билирубина). Участвуют в регуляции водно-минерального обмена. Сывороточные глобулины разделяют на три фракции альфа-, бета- и гамма-глобулины. Глобулины транспортируют жирные кислоты, стероидные гормоны, жирорастворимые витамины, являются иммунными телами.

Углеводный состав крови. В плазме содержатся монозы (глюкоза, фруктоза), гликоген, глюкозамин, фосфаты моноз и другие продукты промежуточного обмена углеводов. Основная часть углеводов представлена глюкозой. Глюкоза и другие монозы в плазме крови находятся в свободном и связанном с белками состояниях. Содержание связанной глюкозы достигает 40-50% общего содержания углеводов. Среди продуктов промежуточного обмена углеводов выделяют лактатную кислоту, содержание которой резко возрастает после тяжелых физических нагрузок.

Концентрация глюкозы может изменяться при многих патологических состояниях. Явление гипергликемии характерно для сахарного диабета, гипертиреоза, шока, наркоза, лихорадки.

Липидный состав крови. В плазме содержится до 0,7 % и больше липидов. Липиды находятся в свободном и связанном с белками состояниях. Концентрация липидов в плазме изменяется при патологии. Так, при туберкулезе она может достигать 3-10%.

Газовый состав крови. Данная биожидкость содержит оксиген (кислород), диоксид карбона и нитроген в свободном и связанных состояниях. Так, например, около 99,5–99,7% оксигена связано с гемоглобином, а 03–0,5 % находится в свободном состоянии.

fb.ru

Биохимический анализ крови: нормы у взрослых и детей, показатели, как расшифровать результаты

Автор: З. Нелли Владимировна, врач лабораторной диагностики НИИ трансфузиологии и медицинских биотехнологий

Биохимический анализ крови (или привычнее для пациента «биохимия крови») используются на первом этапе диагностики любых патологических состояний. Обычно поводом для его назначения являются не совсем хорошие результаты общего анализа, ежегодная диспансеризация населения (при наличии хронических заболеваний) или профилактическое обследование лиц, занятых на вредных производственных процессах.

Биохимический анализ крови (БАК) включает множество различных показателей, определяющих работу того или иного органа, назначается врачом, хотя и сам пациент по собственному желанию может обратиться в платную лабораторию, чтобы сделать биохимию. Значения норм традиционно используемых тестов на содержание холестерина, билирубина, активности аминотрансфераз известны многим людям, не имеющим медицинского образования, но активно интересующихся своим здоровьем.

Таблица норм биохимического анализа крови

Учитывая многогранность проводимых исследований в биохимической лаборатории и высокий интерес пациентов к этой теме, мы постараемся обобщить данные тесты, но ограничимся самыми распространенными показателями, названия, единицы измерения и нормы которых представим в виде таблицы, максимально приближенной к официальному бланку результатов БАК.

Следует иметь в виду, что нормы многих показателей у взрослых и у детей разнятся, а, кроме этого, нередко зависят от половой принадлежности, особенностей и возможностей того или иного организма. Чтобы таблица не утомила читателя, нормы будут приведены преимущественно для взрослых с упоминанием значения показателей у детей (до 14 лет), мужчин и женщин в отдельности, если в этом появится необходимость.

ПоказателиЕдиницы измеренияНормаПримечание
Общий белокг/л64 – 83 (у взрослых)

58 – 76 (у детей)

 -
Альбуминг/л35 – 50 (у взрослых)

38 – 54 (у детей)

 -
Миоглобинмкг/л19 – 92 (муж.)

12 – 76 (жен.)

 -
Трансферринг/л2,0 – 4,0 у беременных показатель выше, у стариков, наоборот – его значения снижаются по сравнению с указанной нормой
Ферритинмкг/л20 – 250 (м)

10 – 120 (ж)

 -
ОЖССмкмоль/л26,85 – 41,2 повышается физиологически с одновременным падением уровня железа у беременных женщин
СРБмг/лдо 0,5 (для всех)показатель не зависит от пола и возраста
Ревматоидный факторЕд/млдо 10 (для всех)не зависит от пола и возраста
Церулоплазминмг/л 150,0 – 600,0 -
Холестерин общийммоль/лдо 5,2для определения липидного спектра в БАК включаются ЛПВП и ЛПНП
Триглицеридыммоль/л0,55 – 1,65приведенные нормальные значения  весьма условны, поскольку уровень ТГ изменяется в сторону увеличения каждые 5 лет, но не должен превышать 2,3 ммоль/л
Мочевинаммоль/л2,5 – 8,3 (взрослые)

1,8 – 6,4 (дети)

 -
Креатининмкмоль/лу взрослых: 62 – 115 (м) 53 – 97 (ж)

у детей - от 27 до 62

 -
Мочевая кислотаммоль/л0,24 – 0,50 (м) 0,16- 0,44 (ж)

0,12 – 0,32 (дети)

 -
Билирубин общий связанный

свободный

мкмоль/л3,4 – 17,1 25% общего

75% общего

в других источниках норма до 20,5 мкмоль/л
Глюкозамоль/лвзрослые: 3,89 – 5,83

дети: 3,33 – 5,55

старше 60 лет - до 6,38
Фруктозаминммоль/лдо 280,0у диабетиков диапазон значений от 280 до 320 говорит об удовлетворительной регуляции углеводного обмена
Аспартатаминотрансфераза (АсАТ)Ед/лу взрослых (37°С): до 31 у женщин до 35 у мужчин

у детей: в зависимости от возраста

показатели нормы зависят от температуры инкубации пробы, у детей зависят еще и от возраста, но, в целом, нормы выше
Аланинаминотрансфераза (АлАТ)Ед/лу взрослых: до 31 у женщин

до 41 у мужчин

при 37°С, у детей нормальные значения несколько выше
Щелочная фосфатаза (ЩФ)Ед/л20 – 130 (взрослые)

130 – 600 (дети)

при 37°С
α-амилазаЕд/лдо 120 (у взрослых и у детей после года)у детей до года – до 30 Ед/л
ЛипазаЕд/л0 - 417 -
Креатинкиназа (КК), креатинфосфокиназа (КФК)Ед/лдо 195 у мужчин

до 170 у женщин

при 37°С
МВ-фракция ККЕд/лменее 10 Ед/л -
Лактатдегидрогеназа (ЛДГ)Ед/л120- 240 у детей в зависимости от возраста:

1 месяц - 150- 785,постепенное снижение к году до 145 – 365, до 2 лет – до 86 – 305, у детей и подростков норма составляет от 100 до 290 Ед/л

при 37°С
Гамма-глютамилтранспептидаза (ГГТП)Ед/лу взрослых: 11 – 50 (м) 7 – 32 (ж) у детей: до месяца – до 163 до года – ниже 91

до 14 лет – ниже 17 Ед/л

при 37°С
Натрийммоль/л134 – 150 (взрослые)

у детей – 130 - 145

 -
Калийммоль/лу взрослых: 3,6– 5,4 у детей: до 1 мес. -3,6 – 6,0 до года – 3,7 – 5,7

до 14 лет – 3,2 – 5,4

 -
Хлоридыммоль/л95,0 – 110,0 -
Фосформмоль/л0,65 – 1,3 (взрослые)

от 1,3 до 2,1(дети)

 -
Магнийммоль/л0,65 – 1,1 -
Железомкмоль/лу взрослых: 11,64 – 30,43 (м) 8,95 – 30,43 (ж) у детей: до года - 7,16 – 17,9

до 14 лет - 8,95 – 21,48

 -
Кальцийммоль/л2,0 – 2,8 -
Цинкмкмоль/л11 - 18 (взрослые)

11 - 24 (у детей)

 -
Хотелось бы обратить внимание читателя, что в разных источниках можно встретить другие значения нормы. Особенно это касается ферментов, например, N АлАТ – от 0,10 до 0,68 ммоль/(ч.л), АсАТ – от 0,10 до 0,45ммоль/(ч.л). Это зависит от единиц измерения и температуры инкубации пробы, что обычно отражается в бланке анализа, ровно, как и референтные значения данной КДЛ.  И, конечно, совсем не значит, что весь этот перечень для каждого больного является обязательным, ведь нет смысла назначать все в куче, если отдельные показатели при подозрении на определенную патологию никакой информации не несут.

Врач, выслушав жалобы больного и опираясь на клинические проявления, у пациента с артериальной гипертензией, скорее всего, в первую очередь будет исследовать липидный спектр, а при подозрении на гепатит назначит билирубин, АлТ, АсТ и, возможно, щелочную фосфатазу. И уж конечно – первый признак сахарного диабета (неумеренная жажда) является поводом для исследования крови на сахар, а явные признаки анемии заставят заинтересоваться железом, ферритином, транферрином и ОЖСС. При получении не очень хороших результатов биохимические исследования всегда можно продолжить, расширив за счет дополнительных анализов (на усмотрение врача).

Основные показатели биохимического анализа крови

По измененному общему анализу крови судят о наличии патологии, которую придется еще поискать. Биохимический анализ, в отличие от общеклинического, показывает нарушения функции определенного органа в результате патологических изменений, которые самим человеком еще не распознаны, то есть, на этапе скрытого течения болезни. Кроме этого, БАК помогает установить, хватает ли организму витаминов, микроэлементов и других необходимых веществ. Таким образом, к основным показателям биохимического анализа крови относят ряд лабораторных тестов, которые для удобства восприятия следует разделить на группы.

Данную группу в БАК представляют и белки, без которых жизнь организма невозможна, и специфические белковые структуры, возникающие в силу определенных (экстремальных) ситуаций:

  • Общий белок, изменение его уровня может свидетельствовать о развитии патологических процессов, в том числе, онкологических, в некоторых внутренних органах (печень, почки, желудочно-кишечный тракт) и соединительной ткани, однако следует не забывать, что снижение содержания общего белка может стать результатом недостаточного его поступления с пищей. Нередко совместно с общим белком исследуются и белковые фракции (α, β, γ), ведь уменьшение и увеличение содержания различных белков, нарушение соотношения между ними являются спутниками многих патологических состояний.
  • Альбумин, позволяющий находить патологию паренхиматозных органов (печень, почки), диагностировать ревматизм и новообразования, а также выявлять действие гормональных препаратов на организм или последствия голодных диет.
  • Миоглобин используется для выявления патологических изменений в мышце сердца и скелетной мускулатуре. Причиной повышения данного показателя могут также стать травмы, термические поражения и частые судороги.
  • Трансферрин – связывающий и транспортирующий железо белок, изменения значений которого могут указывать на снижение функциональных способностей печени.
  • Ферритин – белок, создающий резервный запас железа в организме, его уровень исследуется для диагностики анемий различного происхождения (железодефицитная или связанная с другой патологией: инфекции, ревматизм, злокачественные новообразования);
  • ОБЖЖ (общая железосвязывающая способность сыворотки), показывающая состояние белков, отвечающих за обмен, связывание и транспорт феррума в организме. ОЖСС изменяется при заболеваниях печени, анемиях, опухолевых процессах.
  • Церулоплазмин – белок, переносящий ионы меди. Увеличение активности ЦП наблюдается при инфаркте миокарда, воспалительных процессах и злокачественных новообразованиях различной локализации, однако больше всего данный лабораторный тест используется для диагностики болезни Коновалова-Вильсона – тяжелой гепатоцеребральной патологии.
  • СРБ (С-реактивный белок) – специфический белок, появляющийся в сыворотке крови больного человека (проникновение инфекционных агентов, воспаление, травма, туберкулезный, септический, онкологический процессы, менингит, инфаркт миокарда, осложнения после оперативных вмешательств).
  • Ревматоидный фактор – группа специфических иммуноглобулинов (аутоантител), синтезирующихся при развитии ревматоидного артрита и других патологических состояний (системная красная волчанка, септический эндокардит, туберкулез, инфекционный мононуклеоз, отдельные гематологические болезни). При ревматоидном артрите часто наблюдается повышение активности антистрептолизина О (АСЛО), однако, АСЛО в большей степени является маркером сенсибилизации к стрептококковой инфекции с развитием ревматизма, который дает более высокие значения показателя, чем РА.

Ферменты

Ферменты в биохимическом анализе крови чаще представлены «печеночными пробами» (АлТ и АсТ) да амилазой, заметно повышающейся при возникновении проблем с поджелудочной железой. Между тем, перечень энзимов, которые могут рассказать о состояния организма значительно шире:

  1. Аланинаминотрансфераза (АлТ) – входит в упомянутые выше «печеночные пробы», поскольку в первую очередь является показателем функциональных способностей печени, а потом уже характеризует другие органы.
  2. Аспартатаминотрансфераза (АсТ) – помимо выявления заболеваний печени, применяется при диагностике сердечной патологии (инфаркт миокарда, ревмокардит, приступ стенокардии) и некоторых инфекционных процессов.
  3. α-амилаза и панкреатическая амилаза – эти показатели чаще всего являются свидетелями воспалительных процессов в поджелудочной железе, хотя активность амилазы может повышаться и в других случаях: эпидемический паротит, оперативные вмешательства в органы брюшной полости, почечная недостаточность, прием больших доз алкоголя, применение лекарственных препаратов отдельных фармацевтических групп (наркотики, гормоны, салицилаты).
  4. Креатинкиназа (КК) – энзим, который отражает энергетический обмен, происходящий в клетках различных тканей (нервной, мышечной). Повышенные значения МВ-фракции креатинкиназы (важный лабораторный тест в кардиологической практике) позволяют диагностировать и сам инфаркт миокарда, и определить его прогноз, помогая тем самым врачу выбрать наиболее правильную лечебную тактику.
  5. Лактатдегидрогеназа (ЛДГ) – внутриклеточный фермент, увеличение активности которого наблюдается при инфаркте миокарда, отдельных видах анемий (гемолитическая и мегалобластная), гепатитах. Существенный рост показателя характерен для злокачественных новообразований и, особенно, их метастазирования.
  6. Гамма–глютамилтранспептидаза (ГГТП) – определение активности этого фермента оказывает немалую помощь при диагностике воспалительных (острых и хронических) заболеваний печени, протекающих без выраженных клинических проявлений.
  7. Липаза – энзим, участвующий в расщеплении нейтральных жиров. Важная роль принадлежит липазе панкреатической, которая особую значимость приобрела в гастроэнтерологии, так как по своим диагностическим возможностям (заболевания поджелудочной железы) превосходит такой показатель, как амилаза.
  8. Фосфатаза щелочная – ее назначение уместно при заболеваниях костной системы, печени и желчевыводящих путей.
  9. Фосфатаза кислая – увеличение активности данного фермента наблюдается, в основном, при поражении предстательной железы.
  10. Холинэстераза – уровень  ее активности отражает синтетическую способность печеночной паренхимы, однако следует заметить, что цифровое выражение данного фермента заметно уменьшается при значительном поражении печени (тяжелое течение болезни). Кроме этого, активность фермента уменьшается при тромбоэмболии легочной артерии (ТЭЛА), инфаркте миокарда, злокачественных новообразованиях, миеломе, ревматизме, воспалительных процессах в почках. Вряд ли перечисленные состояния можно отнести к категории легких, поэтому понятно, почему активность холинэстеразы преимущественно интересует врачей стационара, нежели поликлиники.

Липидный спектр

Диагностика заболеваний сердечно-сосудистой системы, как правило, не ограничивается лишь назначением общего холестерина, для кардиолога данный показатель в изолированном виде никакой особой информации не несет. Для того чтобы узнать, в каком состоянии находится сосудистые стенки (а они могут быть тронуты атеросклерозом), нет ли признаков развития ИБС или, упаси Бог, явно грозит инфаркт миокарда, чаще всего используют биохимический тест, называемый липидным спектром, который включает:

  • Холестерин общий;
  • Липопротеины низкой плотности (ХС-ЛПНП);
  • Липопротеины высокой плотности (ХС-ЛПВП);
  • Триглицериды;
  • Коэффициент атерогенности, который рассчитывается по формуле, исходя из цифровых значений показателей, указанных выше.

Думается, что нет особой надобности в очередной раз описывать характеристики, клиническое и биологическое значение всех составляющих липидного спектра, они достаточно подробно изложены в соответствующих темах, размещенных на нашем сайте.

Наверное, самым распространенным анализом в числе показателей биохимии крови является содержание глюкозы (“сахара”). Этот тест в дополнительных комментариях не нуждается, все знают, что проводят его строго натощак, а показывает он, не грозит ли человеку сахарный диабет. Хотя, следует заметить, что существуют и другие причины повышения данного показателя, не связанные с наличием грозного заболевания (травмы, ожоги, печеночная патология, болезни поджелудочной железы, чрезмерное поедание сладких продуктов).

Вопросы у молодых, еще несведущих в «сахарном» деле пациентов, может вызвать проведение глюкозонагрузочного теста (сахарная кривая), которую назначают, в основном, для выявления скрытых форм диабета.

К сравнительно новым тестам, призванным определить поведение углеводов в организме, можно отнести гликированные белки (или гликозилированные – что одно и то же):

  1. Гликированный альбумин (в БАК он обозначается как фруктозамин);
  2. Гликированный гемоглобин;
  3. Гликозилированные липопротеины.

Пигменты

Билирубин – продукт распада гемоглобина эритроцитов, его повышенные показатели характерны для широкого круга патологических состояний, поэтому для диагностики используют три варианта гемоглобиногенного пигмента:

  • Билирубин общий;
  • Прямой или связанный, конъюгированный;
  • Непрямой (свободный, несвязанный, неконъюгированный).

Болезни, связанные с повышением данного пигмента, могут быть самого различного происхождения и характера (от наследственной патологии до несовместимых переливаний крови), поэтому диагноз в большей мере основывается в зависимости от соотношения фракций билирубина, а не от его общего значения. Чаще всего этот лабораторный тест помогает диагностировать отклонения, причиной которых стало поражение печени и желчевыводящих путей.

Низкомолекулярные азотистые вещества

Низкомокулярные азотистые вещества в биохимическом исследовании крови представлены такими показателями:

  1. Креатинин, позволяющий определить состояние многих органов и систем и поведать о серьезных нарушениях их функции (тяжелые поражения печени и почек, опухоли, сахарный диабет, снижение функции надпочечников).
  2. Мочевина, представляющая собой основной анализ, указывающий на развитие почечной недостаточности (уремический синдром, «мочекровие»). Уместным будет назначение мочевины для определения функциональных способностей других органов: печени, сердца, желудочно-кишечного тракта.

Микроэлементы, кислоты, витамины

В биохимическом исследовании крови нередко можно встретить тесты, определяющие уровень неорганических веществ и органических соединений:

  • Кальций (Са) – внутриклеточный катион, основное место сосредоточения которого – костная система. Значения показателя изменяются при заболеваниях костей, щитовидной железы, печени и почек. Кальций служит важным диагностическим тестом выявления патологии развития костной системы у детей;
  • Натрий (Na) относится к основным внеклеточным катионам, переносит воду, изменение концентрации натрия и выход ее за пределы допустимых значений может повлечь серьезные патологические состояния;
  • Калий (K) – изменения его уровня в сторону уменьшения может останавливать работу сердца в систоле, а в сторону увеличения – в диастоле (и то, и другое – плохо);
  • Фосфор (P) – химический элемент, прочно связанный в организме с кальцием, вернее, с метаболизмом последнего;
  • Магний (Mg) – и недостаток (обызвествление артериальных сосудов, снижение кровотока в микроциркуляторном русле, развитие артериальной гипертензии), и избыток («магнезиальный наркоз», блокада сердца, кома) влечет нарушения в организме;
  • Железо (Fe) может обойтись без комментариев, этот элемент является составной частью гемоглобина – отсюда его главная роль;
  • Хлор (Cl) – основной внеклеточный осмотически активный анион плазмы;
  • Цинк (Zn) – недостаток цинка задерживает рост и половое развитие, увеличивает селезенку и печень, способствует возникновению анемии;
  • Цианокобаламин (витамин В12);
  • Аскорбиновая кислота (витамин С);
  • Фолиевая кислота;
  • Кальцитриол (витамин D) – дефицит затормаживает образование костной ткани, вызывает рахит у детей;
  • Мочевая кислота (продукт обмена пуриновых оснований, играющий не последнюю роль в формировании такого заболевания, как подагра).

Центральное место в лабораторной диагностике

Некоторые лабораторные тесты, хотя и входят в раздел биохимии, стоят как бы особняком и воспринимаются отдельно. Это касается, например, такого анализа, как коагулограмма, который изучает систему гемостаза и  включает исследование факторов свертывания крови.

При описании БАК многие лабораторные тесты (белки, ферменты, витамины) остались без внимания, но, в основном, это анализы, назначаемые в редких случаях, поэтому они вряд ли вызовут интерес широкого круга читателей.

Кроме этого, следует отметить, что исследование гормонов или определение уровня иммуноглобулинов (IgA, IgG, IgM) – это тоже биохимический анализ крови, который, однако, осуществляют преимущественно методом ИФА (иммуноферментный анализ) в лабораториях несколько иного профиля. Как правило, пациенты с привычной биохимией его как-то не связывают, да и нам, затрагивая их в данной теме, пришлось бы чертить громоздкие и непонятные таблицы. Впрочем, в крови человека можно определить практически любое вещество, присутствующее в ней постоянно или случайно туда проникшее, однако, чтобы каждое из них рассмотреть досконально, пришлось бы писать большую научную работу.

Для базовой же оценки состояния здоровья человека обычно используются следующие показатели:

  1. Общий белок;
  2. Альбумин;
  3. Мочевина;
  4. Мочевая кислота;
  5. АсАТ;
  6. АлАТ;
  7. ЛДГ;
  8. ЩФ;
  9. Глюкоза;
  10. Билирубин (общий и связанный);
  11. Холестерин общий и ЛПВП;
  12. Натрий;
  13. Калий;
  14. Железо;
  15. ОЖСС.

Вооружившись данным списком, пациент может отправиться в платную биохимическую лаборатории и сдать биологический материал для исследования, а вот с результатами нужно обратиться к специалисту, который займется расшифровкой биохимического анализа крови.

Разный подход к одной проблеме

Расшифровкой биохимического анализа крови, как и других лабораторных тестов, занимается врач лабораторной диагностики или лечащий врач. Тем не менее, можно понять интерес и беспокойство пациента, получившего на руки ответ с результатами исследования его собственной крови. Не каждый в силах дождаться, что скажет доктор: повышенные показатели или, наоборот, они находятся ниже допустимых значений. Врач, конечно, объяснит  подчеркнутые красным или выделенные другим способом цифры и расскажет, какие болезни могут скрываться за отклонениями от нормы, однако консультация может быть завтра-послезавтра, а результаты – вот они: в собственных руках.

Ввиду того, что пациенты ныне в большинстве своем люди довольно грамотные и в вопросах медицины немало «подкованные», мы попробовали вместе разобраться в наиболее распространенных вариантах БАК, но опять-таки – исключительно с ознакомительной целью. В связи с этим хочется предостеречь пациентов от самостоятельной расшифровки биохимического анализа крови, ведь одни и те же величины БАК могут у разных людей говорить о разных болезнях. Для того чтобы в этом разобраться, врач привлекает к диагностическому поиску другие лабораторные тесты, инструментальные методы, уточняет анамнез, назначает консультации смежных специалистов. И только собрав все факторы воедино, в том числе, и биохимическое исследование крови, врач выносит свой вердикт (устанавливает диагноз).

Пациент к данному вопросу подходит по-другому: не имея специальных знаний, оценивает результаты однобоко: показатель повышен – значит, больной (название болезни найти несложно). Однако это еще полбеды, хуже, когда, опираясь на результаты анализов и собственные умозаключения, человек назначает себе лечение. Это недопустимо, поскольку можно упустить время, если человек на самом деле болен, или навредить своему организму, используя вычитанные в сомнительных источниках методы лечения. А вот что нужно действительно знать и помнить пациенту – так это, как правильно подготовиться к биохимическому исследованию крови.

Во избежание излишних затрат

Биохимические исследования крови всегда проводятся натощак, поскольку они очень чувствительны к различным веществам, попавшим в организм накануне анализа (пищевые продукты, фармацевтические средства). Особенно неустойчив к различным внешним и внутренним воздействиям гормональный фон человека, поэтому отправляясь в лабораторию, следует учитывать подобные нюансы и постараться подготовиться должным образом (анализ на гормоны не очень-то и дешевый).

Для исследования биохимии крови необходимо добыть ее из локтевой вены в количестве не менее 5 мл (при тестировании сыворотки на автоматическом анализаторе можно обойтись и меньшей дозой). Человек, пришедший на анализ, должен быть заведомо осведомлен и подготовлен к важной процедуре:

  • Вечером позволить себе легкий ужин, после которого можно только пить чистую воду (алкоголь, чай, кофе, соки к разрешенным напиткам не относятся);
  • Отменить вечернюю пробежку (исключить повышенную физическую активность), коль она запланирована по режиму;
  • Отказать в удовольствии принять горячую ванну на ночь;
  • Мужественно выдержать 8-12-часовое голодание (для липидного спектра не рекомендуется принимать пищу 16 часов);
  • Утром не принимать таблетки, не заниматься зарядкой;
  • Преждевременно не нервничать, чтобы в спокойном состоянии прибыть в лабораторию.

В противном случае придется посетить КДЛ повторно, что повлечет дополнительные нервные и материальные затраты. Не нужно особо сравнивать биохимию с общим анализом крови, где изучается клеточный состав. Там хоть и требуется подготовка, но не столь строгая, съеденный кусочек чего-либо вкусного может не и повлиять на результат. Здесь по-другому: биохимические показатели представлены метаболитами и биологически активными веществами, которые не смогут оставаться «равнодушными» даже к малейшим изменениям внутри организма или вокруг его. Например, одна конфета, съеденная на завтрак, вызовет повышение сахара в крови, выброс инсулина, активацию ферментов печени и поджелудочной железы и так далее… Возможно, кто-то не поверит, но любое наше действие найдет отражение в биохимическом анализе крови.

Видео: биохимический анализ крови в программе “О самом главном”

Вывести все публикации с меткой:

Перейти в раздел:

  • Заболевания крови, анализы, лимфатическая система

Рекомендации читателям СосудИнфо дают профессиональные медики с высшим образованием и опытом профильной работы.

На ваш вопрос ответит один из ведущих авторов сайта.

В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза

Поблагодарить специалиста за помощь или поддержать проект СосудИнфо можно произвольным платежом по ссылке.

sosudinfo.ru


Смотрите также